Apparent Molar Volume and Isentropic Compressibility of Trisodium Citrate in Water and in Aqueous Solutions of Polyvinylpyrrolidone at T = (283.15 to 308.15) K

Rahmat Sadeghi* and Fatemeh Ziamajidi

Department of Chemistry, University of Kurdistan, Sanandaj, Iran

Precise density and sound velocity measurements have been carried out on trisodium citrate in aqueous solutions of 0.000, 0.002, and 0.004*m* polyvinylpyrrolidone (PVP) at T = (283.15 to 308.15) K at atmospheric pressure. From these experimental data, the apparent molar volume and isentropic compressibility values have been evaluated and fitted to a Redlich–Mayer-type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at infinite dilution have also been calculated at each temperature. The results show a positive transfer volume of trisodium citrate from an aqueous PVP solution to a more concentrated PVP solution. This indicates that the size of trisodium citrate is larger in a solution with higher PVP concentration. The apparent molar isentropic compressibility of trisodium citrate are less compressible than the water molecules in the bulk solutions.

Introduction

Ternary aqueous solutions of trisodium citrate and polyvinylpyrrolidone (PVP) separate into a trisodium citrate-rich and a PVP-rich phase over part of the composition space. Aqueous two-phase systems of this nature are useful for the separation and purification of biomaterials where the employment of a nonpolar solvent/aqueous phase system would lead to degradation of biological activity.^{1,2} Citrate is biodegradable and nontoxic and could be discharged into biological wastewater treatment plants, and therefore, the citrates can be considered as a substitute for inorganic salts because the citrate forms an aqueous two-phase system with PVP which is suitable for protein extraction. Thermodynamic properties of aqueous polymer-salt systems are necessary for a fundamental understanding of the phase-forming ability and also for the development of theoretical models for the prediction of the partitioning behavior of the two-phase system. In addition to aqueous twophase systems, aqueous solutions of sodium citrate are of a considerable significance in many other biochemical and chemical processes, and this salt is produced in large quantities and used in food, cosmetic, pharmaceutical, and chemical industries.³⁻⁶ In our previous works,^{7,8} liquid-liquid and vaporliquid equilibria of aqueous PVP + trisodium citrate systems have been studied at different temperatures. The present work is a continuation of these studies and presents experimental data on the density and sound velocity of trisodium citrate in aqueous solutions of 0.000, 0.002, and 0.004m polyvinylpyrrolidone at T = (283.15 to 308.15) K, and the values of apparent molar volume, V_{ϕ} , and apparent molar isentropic compressibility, K_{ϕ} , were then calculated from the measured data. Although there are some reports on the density of aqueous trisodium citrate solutions,^{9–11} there are however no experimental data on the ultrasonic velocity of aqueous solutions of trisodium citrate in the literature. Furthermore, data on volumetric and isentropic

compressibility behavior of trisodium citrate in aqueous PVP solutions, which is a very important system with respect to its use in biotechnology, are scarce. Recently, Murugesan and Perumalsamy¹² measured the densities and viscosities for ternary aqueous solutions of polyethylene glycol and sodium citrate at different temperatures.

Experimental Section

Materials. PVP (average molar mass = 10 000) was obtained from Merck. The manufacturer has characterized this polymer as polyvidon 25 with lot number k34372143 516. Sodium citrate ($C_6H_5Na_3O_7 \cdot 2H_2O$) was obtained from Merck (GR, min 99.5 %). The polymer and salt were used without further purification, and double-distilled, deionized water was used.

Apparatus and Procedures. The aqueous solutions were prepared by mass, using an analytical balance (Sartorius CP124S) with a precision of \pm 0.1 mg. The density and sound velocity of the mixtures were measured at different temperatures with a digital vibrating-tube analyzer (Anton Paar DSA 5000, Austria) with proportional temperature control that kept the samples at the working temperature with a precision of 0.001 K. The apparatus was calibrated with double-distilled, deionized, and degassed water and dry air at atmospheric pressure. The reproducibility of density and ultrasonic velocity measurements was better than \pm 3.0·10⁻⁶ g·cm⁻³ and \pm 0.1 m·s⁻¹, respectively.

Results and Discussion

Experimental data of density (*d*) and sound velocity (*u*) for various trisodium citrate solutions determined at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K are given in Table 1. The dependence of density and ultrasonic velocity on temperature and concentration has been calculated by means of the following equation:

* Corresponding author. E-mail: rahsadeghi@yahoo.com and rsadeghi@uok.ac.ir. Tel./Fax: +98-871-6624133.

$$F = P_1 \exp\left(\frac{P_2 + P_3 m_{\rm s} + P_4 m_{\rm s}^{1.5}}{T - P_5}\right) + P_6 m_{\rm p} \tag{1}$$

Table	1.	Experimental D	Density a	d/(g·cm ⁻³)) and	Ultrasonic	Velocity	$u/(\mathbf{m} \cdot \mathbf{s}^{-1})$) of Na	3Cit in	Aqueous	PVP	Solutions a	at Different	Temp	eratures
				·· \ n · /						J						

ms	T = 28	3.15 K	T = 28	8.15 K	T = 293	3.15 K	T = 29	8.15 K	T = 303.15 K		= 303.15 K $T = 308.15$ K	
mol·kg ⁻¹	d	и	d	и	d	и	d	и	d	и	d	и
					$m_{\rm p} =$	0.000 mol·l	kg ^{−1}					
0.0253	1.004627	1454.17	1.003962	1472.3	1.00301	1488.39	1.001804	1502.5	1.000366	1514.76	0.998718	1525.33
0.0347	1.00641	1456.41	1.005723	1474.46	1.004752	1490.48	1.00353	1504.5	1.002081	1516.71	1.000422	1527.23
0.0507	1.009393	1459.93	1.008669	1477.88	1.00767	1493.82	1.006422	1507.75	1.004953	1519.89	1.003273	1530.31
0.076	1.014051	1465.53	1.013274	1483.29	1.012227	1499.05	1.01094	1512.79	1.009435	1524.79	1.007728	1535.08
0.1014	1.018671	1470.95	1.017842	1488.58	1.01675	1504.16	1.015425	1517.78	1.013888	1529.63	1.012153	1539.78
0.1327	1.024275	1477.58	1.023383	1495.01	1.022239	1510.37	1.020869	1523.83	1.019292	1535.49	1.017524	1545.47
0.1799	1.032629	1487.27	1.031649	1504.39	1.030429	1519.49	1.028996	1532.7	1.027365	1544.11	1.025548	1553.86
0.216	1.03891	1494.72	1.037865	1511.57	1.036591	1526.45	1.035109	1539.43	1.033438	1550.64	1.031587	1560.23
0.2191	1.039473	1495.39	1.038425	1512.23	1.037148	1527.08	1.035663	1540.01	1.033987	1551.22	1.032135	1560.81
0.2524	1.045153	1502.08	1.044051	1518.71	1.042723	1533.37	1.041197	1546.11	1.039486	1557.15	1.037603	1566.56
0.2523	1.045189	1502.06	1.044084	1518.72	1.042758	1533.4	1.041231	1546.15	1.03952	1557.2	1.037636	1566.6
0.2812	1.050011	1507.78	1.048862	1524.27	1.047495	1538.74	1.045933	1551.33	1.044193	1562.23	1.042284	1571.49
0.3639	1.063676	1524.31	1.062401	1540.19	1.060929	1554.15	1.059274	1566.28	1.057454	1576.7	1.055473	1585.55
0.3716	1.064917	1525.76	1.063635	1541.59	1.06215	1555.52	1.060489	1567.6	1.058659	1577.98	1.056673	1586.8
0.4483	1.07725	1540.89	1.07586	1556.22	1.074287	1569.65	1.072545	1581.25	1.070647	1591.24	1.068602	1599.68
0.4985	1.085108	1550.62	1.083655	1565.61	1.082027	1578.72	1.080236	1590.06	1.078298	1599.78	1.076212	1607.96
0.656	1.10896	1581.01	1.107325	1594.89	1.10554	1606.98	1.103608	1617.35	1.101547	1626.22	1.09936	1633.61
0.8285	1.13383	1613.99	1.132025	1626.62	1.130088	1637.56	1.128028	1646.89	1.125848	1654.78	1.123559	1661.28
1.0294	1.161051	1651.38	1.159082	1662.53	1.156995	1672.15	1.154801	1680.28	1.152508	1687.06	1.150118	1692.54
1.3173	1.197375	1703.56	1.19521	1712.59	1.192948	1720.28	1.190603	1726.67	1.188172	1731.9	1.185659	1735.92
					<i>m</i> =	0.002 mol•l	σ^{-1}					
0.0104	1.006086	1460 74	1 005404	1478 37	1 004436	1494 01	1 003212	1507.67	1.001757	1519 56	1.000092	1529 74
0.0256	1.008921	1464 34	1.008203	1481 84	1.007205	1497 39	1.005957	1510.95	1.001/37	1522.73	1.000092	1522.74
0.0250	1.000521	1466.48	1.000203	1483.94	1.007205	1499.4	1.007633	1512.89	1.004402	1522.75	1.002750	1534.67
0.0578	1.014842	1471 74	1.014053	1488.9	1.012995	1504.21	1.011694	1517.57	1.010177	1529.16	1.008457	1539.08
0.0742	1.01779	1475 18	1.014055	1492 38	1.012222	1507.57	1.014556	1520.83	1.013016	1532 35	1.011278	1542 17
0.1143	1.024916	1483 77	1 024011	1500.69	1.022855	1515.62	1 021474	1528.64	1 019883	1539.92	1 018104	1549 52
0 1471	1.021510	1490.65	1 029699	1507.33	1.028488	1522.07	1.027059	1534.89	1.025435	1545.96	1.023622	1555.41
0.1881	1.037724	1499 19	1.025658	1515.45	1.035417	1529.95	1.033936	1542 52	1.032262	1553.4	1.020408	1562.66
0.2632	1.050352	1514.16	1 049191	1530.1	1.047814	1544.09	1.035750	1556.25	1 044488	1566.7	1.042567	1575.55
0.3804	1.069338	1537.23	1.068007	1552.37	1.066483	1565.65	1.06478	1577.09	1.062916	1586.92	1.060898	1595.22
0.5105	1 08954	1563.26	1 088043	1577.4	1 086374	1589.88	1 084547	1600 59	1 082573	1609 73	1 080461	1617 37
0.0100	1100701	1000120	11000010	10,711	11000071	0.004 11	-1	1000107	11002070	1007110	11000101	101/10/
0.0117	1.010457	1470 76	1 000717	1107 01	$m_{\rm p} = 1.0087$	1502 04	(g 1 1 007422	1516.07	1.005027	1527.40	1 00/222	1527.01
0.0117	1.010457	1470.70	1.009/17	1407.04	1.0087	1502.94	1.007432	1518.07	1.003937	1527.49	1.004233	1520.88
0.0249	1.012634	14/3.0/	1.012065	1490.80	1.011041	1509.80	1.009732	1516.92	1.006242	1530.24	1.000323	1542.00
0.0575	1.01310	1470.90	1.014505	1495.07	1.015290	1512.25	1.011967	1521.77	1.010437	1535.05	1.008720	1542.40
0.0331	1.01629	1400.72	1.01/430	1497.40	1.010556	1512.25	1.013023	1525.14	1.01547	1530.27	1.011/19	1540.14
0.075	1.021474	1404.00	1.020003	1507.84	1.019473	1515.90	1.010111	1524.99	1.010337	1539.77	1.014703	1554.02
0.1031	1.02/003	1491.39	1.020133	1520.21	1.024931	1524.52	1.023344	154644	1.021928	1556.04	1.020124	1565.92
0.1005	1.05/5/2	1504.22	1.030329	1520.21	1.035249	1544.27	1.033738	1556.65	1.052070	1566.85	1.030211	1575 44
0.2210	1.040014	1515.02	1.045078	1542.42	1.04452	155672	1.04270	1568 21	1.041017	1578.02	1.039101	1586.20
0.2007	1.03/20/	1520.28	1.030032	1564.67	1.034369	1577.24	1.032930	1500.21	1.051149	1507 20	1.049101	1500.50
0.3999	1.073190	1550.50	1.075602	1579 52	1.072224	1500 44	1.070474	1200.04	1.000504	1597.50	1.000300	1617 10
0.4/4/	1.08008/	1304.78	1.085202	13/8.33	1.080009	1390.00	1.081/18	1001.08	1.0/9/48	1009.8/	1.077033	1017.19

where m_s and m_p are the molality of the salt and polymer, respectively; *T* is the absolute temperature; and P_1 , P_2 , P_3 , P_4 , P_5 , and P_6 are the curve-fit coefficients. The curve-fit coefficients P_1 , P_2 , P_3 , P_4 , P_5 , and P_6 along with the corresponding absolute relative deviation (ARD) for density and sound velocity of investigated systems are given in Table 2. On the basis of the obtained ARD values, we conclude that eq 1 can be successfully used for the correlation of the investigated physical properties at different temperatures and concentrations. In fact, for each property, one set of parameters has been successfully used to correlate all experimental data measured at six temperatures and three polymer molalities.

The apparent molar volumes of the trisodium citrate V_{ϕ} in aqueous PVP solutions were computed from the density of the solution by using the following equation:¹³

$$V_{\phi} = \frac{1000 + m_{\rm p}M_{\rm p}}{m_{\rm s}dd_0}(d_0 - d) + \frac{M_{\rm s}}{d}$$
(2)

where M_s and M_p are the molar mass of the salt and polymer, respectively, and d and d_0 are the densities of the solution and solvent, respectively. For ternary systems, PVP + water is considered as the solvent. In Figure 1, comparison of the apparent molar volume of trisodium citrate measured in this work with those taken from refs 9 and 11 has been made at T = 298.15 K. Figure 1 shows that there is good agreement between our data and those taken from ref 9. Conversely, measured data in this work do not agree well with those taken from ref 11.

A Redlich–Mayer-type equation^{14,15} of the form

$$V_{\phi} = V_{\phi}^{0} + S_{\nu} m_{\rm s}^{0.5} + B_{\nu} m_{\rm s}$$
(3)

was used to obtain V_{ϕ}^0 , the limiting apparent molar volume of trisodium citrate at different temperatures and PVP concentrations. In this equation, S_v and B_v are the empirical parameters which depend on solute, solvent, and temperature. In this work, the temperature dependence of V_{ϕ}^0 , S_v , and B_v was expressed in polynomial form with (T - 283.15) K as a variable, as follows:

$$V_{\phi}^{0} = A^{0} + A^{1}(T - 283.15) + A^{2}(T - 283.15)^{2}$$
(4)

$$S_{\nu} = S_{\nu}^{0} + S_{\nu}^{1}(T - 283.15) + S_{\nu}^{2}(T - 283.15)^{2}$$
(5)

$$B_v = B_v^0 + B_v^1 (T - 283.15) + B_v^2 (T - 283.15)^2$$
(6)

The coefficients of these equations and the corresponding absolute relative deviation for V_{ϕ} at each temperature and PVP concentration are given in Tables 3 and 4, respectively. The

Table 2. Fitting Parameters of Equation 1 along with the Corresponding Absolute Relative Deviation, ARD, for Density and Sound Velocity

	parameters											
property	P_1	P_2	P_3	P_4	P_5	P_6						
density	0.7590	299.2009	216.7164	-60.0277	-797.9956	1.6721						
sound velocity	1869.4835	-27.4717	17.1748	-3.3507	174.6625	4036.96						
	ARD ^a ·10 ⁵ (for Density)											
			temp	erature								
system	283.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K						
$Na_3Cit + PVP(0.000m) + H_2O$	58.70	39.46	36.3	33.12	30.18	44.8						
$Na_3Cit + PVP(0.002m) + H_2O$	40.33	8.75	28.2	28.03	17.65	38.00						
$Na_3Cit + PVP(0.004m) + H_2O$	40.89	46.55	56.37	57.69	54.59	60.46						
		$ARD^{a} \cdot 10^{2}$ (for S	Sound Velocity)									
			temp	perature								
system	283.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K						
$Na_3Cit + PVP(0.000m) + H_2O$	0.17	0.03	0.06	0.08	0.05	0.03						
$Na_3Cit + PVP(0.002m) + H_2O$	0.05	0.05	0.10	0.08	0.02	0.10						
$Na_3Cit + PVP(0.004m) + H_2O$	0.03	0.08	0.09	0.04	0.06	0.21						
^{<i>a</i>} ARD = $\frac{1}{\text{NP}} \sum \left[\frac{d_{\text{exptl}} - d_{\text{calcd}}}{d_{\text{exptl}}} \right].$												

Table 3. Fitting Parameters of Equations 4, 5, and 6 for V_{ϕ} and of Equations 12, 13, and 14 for $10^{4} \cdot K_{\phi}$

				V_{ϕ}							
		temperature									
system	A^0	A^1	A^2	\mathbf{S}_v^0	S_v^1	S_v^2	B_v^0	B_v^1	B_v^2		
$\begin{array}{l} Na_{3}Cit + PVP(0.000m) + H_{2}O \\ Na_{3}Cit + PVP(0.002m) + H_{2}O \\ Na_{3}Cit + PVP(0.004m) + H_{2}O \end{array}$	58.20032 60.28026 62.52543	0.55047 0.53039 0.54054	-0.00677 -0.00728 -0.00733	36.4112 34.15292 26.67073	-0.30067 -0.28695 -0.31935	0.00224 0.00534 0.00492	-7.65008 -8.08119 -1.21965	-0.00075 -0.00533 -0.00086	$\begin{array}{c} 0.00185 \\ -0.00092 \\ 0.00033 \end{array}$		
	10^4 · K_{ϕ}										
	temperature										
system	A^0	A^1	A^2	S_k^0	S_k^1	S_k^2	B_k^0	B_k^1	B_k^2		
$ \frac{Na_{3}Cit + PVP(0.000m) + H_{2}O}{Na_{3}Cit + PVP(0.002m) + H_{2}O} $ $ \frac{Na_{3}Cit + PVP(0.004m) + H_{2}O}{Na_{3}Cit + PVP(0.004m) + H_{2}O} $	-2.53815 -1.85945 -2.30909	0.05086 0.04248 0.03183	$-0.00091 \\ -0.00058 \\ -0.00037$	$ \begin{array}{r} 1.71724 \\ -0.66575 \\ 1.25257 \end{array} $	-0.06924 -0.06476 -0.02516	0.00160 0.00103 0.00025	-0.48140 1.64660 -0.19540	0.03441 0.04691 0.01012	-0.00088 -0.00079 -0.00008		

values of V_{ϕ}^{0} at different temperatures and PVP concentrations calculated from eq 4 and the coefficients presented in Table 3 are given in Table 5. The values of the infinite dilution apparent molar volume are an important property. At infinite dilution, each ion is surrounded only by the solvent molecules and is infinitely distant with other ions. It follows, therefore, that V_{ϕ}^{0}

Figure 1. Plot of apparent molar volume of Na₃Cit, V_{ϕ} , in water against molality of the salt, m_s , at 298.15 K: •, this work; ×, ref 9; \triangle , ref 11.

is unaffected by ion + ion interaction and is a measure only of the ion + solvent interaction.^{16,17} In Figures 2 to 4, the temperature and concentration dependence of V_{ϕ} have been given. From Figures 2 to 4, it can be seen that the apparent molar volumes of trisodium citrate in water and in aqueous PVP solutions increase with an increase in the salt molality. For the low concentrations of trisodium citrate, the small volume of trisodium citrate is attributed to the strong attractive interactions due to the hydration of ions. By increasing the salt concentration, the ion-ion interaction increases, and the positive initial slope of V_{ϕ} against salt concentration is attributed to these interactions. In the electrolyte solutions, the solute-solute interactions are characterized by positive slopes of V_{ϕ} versus concentration plots.¹⁶ This is attributed to the phenomenon described in terms of destructive overlap of cospheres,^{18,19} resulting in a net decrease of solvation, thereby increasing the solute volume. The effect of temperature on the V_{ϕ}^0 of trisodium citrate in aqueous PVP solutions has been shown in Figure 5. As can be seen from Figure 5, the infinite dilution apparent molar volume of trisodium citrate in aqueous PVP solutions increases with increasing temperature. In fact, the infinite dilution apparent molar volume is equal to the infinite dilution partial molar volume, and therefore, due to the additivity principle at infinite dilution, we have

$$V_{\phi}^{0}(\text{Na}_{3}\text{Cit}) = 3V_{\phi}^{0}(\text{Na}^{+}) + V_{\phi}^{0}(\text{Cit}^{3-})$$
(7)

Table 4. Absolute Relative Deviation, ARD, of V_{ϕ} and K_{ϕ} for the Investigated Systems at Different Temperatures

		ARD•	102							
temperature										
 system	283.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K				
		V_{ϕ}								
$Na_3Cit + PVP(0.000m) + H_2O$	0.36	0.35	0.34	0.34	0.32	0.31				
$Na_3Cit + PVP(0.002m) + H_2O$	0.08	0.11	0.11	0.09	0.09	0.10				
$Na_3Cit + PVP(0.004m) + H_2O$	0.27	0.24	0.24	0.22	0.22	0.20				
		K_{d}								
$Na_3Cit + PVP(0.000m) + H_2O$	-0.77	-0.49	-0.26	-0.18	-0.18	-0.27				
$Na_3Cit + PVP(0.002m) + H_2O$	-2.43	-2.83	-3.31	-3.64	-3.96	-4.33				
$Na_3Cit + PVP(0.004m) + H_2O$	-0.32	-0.44	-0.46	-0.51	-0.46	-0.54				

Table 5. Values of $V_{\phi}^{0}/(\text{cm}^{3}\cdot\text{mol}^{-1})$, $E_{\phi}^{0}/(\text{cm}^{3}\cdot\text{mol}^{-1}\cdot\text{K}^{-1})$, and $K_{\phi}^{0}/(\text{cm}^{3}\cdot\text{mol}^{-1}\cdot\text{kPa}^{-1})$ of Trisodium Citrate at Different Temperatures and PVP Concentrations

	temperature									
system	283.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K				
		V_d^0)							
$Na_3Cit + PVP(0.000m) + H_2O$	58.200	60.783	63.028	64.934	66.502	67.731				
$Na_3Cit + PVP(0.002m) + H_2O$	60.280	62.750	64.856	66.598	67.976	68.990				
$Na_3Cit + PVP(0.004m) + H_2O$	62.525	65.045	67.198	68.984	70.404	71.458				
		E^{0})							
$Na_3Cit + PVP(0.000m) + H_2O$	0.5505	0.4828	0.4151	0.3474	0.2797	0.2120				
$Na_3Cit + PVP(0.002m) + H_2O$	0.5304	0.4576	0.3848	0.3120	0.2392	0.1664				
$Na_3Cit + PVP(0.004m) + H_2O$	0.5405	0.4672	0.3939	0.3206	0.2473	0.1740				
		K_{4}^{0}	04							
$Na_3Cit + PVP(0.000m) + H_2O$	-2.538	-2.307^{ϕ}	-2.121	-1.980	-1.885	-1.835				
$Na_3Cit + PVP(0.002m) + H_2O$	-1.859	-1.662	-1.493	-1.353	-1.242	-1.160				
$Na_3Cit + PVP(0.004m) + H_2O$	-2.309	-2.159	-2.028	-1.915	-1.820	-1.745				

The infinite dilution apparent molar volume of ions can be expressed as the sum of two contributions:²⁰

$$V_{\phi}^{0}(\text{ion}) = V_{\phi}^{0}(\text{int}) + V_{\phi}^{0}(\text{elect})$$
(8)

where $V_{\phi}^{0}(\text{int})$ is the intrinsic (related to the size of the ions and to packing effects) apparent molar volume and $V_{\phi}^{0}(\text{elect})$ is the electrostriction apparent molar volume related to ion–solvent interactions (i.e., the decrease in volume due to hydration). The term $\partial V_{\phi}^{0}(\text{int})/\partial T$ contributes negligibly to the overall temperature dependence of $V_{\phi}^{0}(\text{ion})$, and therefore an increase in the V_{ϕ}^{0} by increasing temperature occurs with loss of hydration.

Figure 2. Plot of apparent molar volume of Na₃Cit, V_{ϕ} , in water against molality of the salt, m_s , at different temperatures: \bigcirc , T = 283.15 K; \triangle , T = 288.15 K; \bigcirc , T = 293.15 K; \checkmark , T = 298.15 K; \triangle , T = 303.15 K; \diamondsuit , T = 308.15 K; \neg , calculated by eqs 3–6.

Also, as can be seen from Figures 2 to 4, the initial slopes of V_{ϕ} against molality of sodium citrate are positive, the magnitude of which increases with decreasing temperature. This is because at higher temperatures ion-solvent interactions are weakened. The infinite dilution apparent molar expansibility can be obtained by differentiating eq 4 with respect to temperature

$$E_{\phi}^{0} = \left(\frac{\partial V_{\phi}^{0}}{\partial T}\right)_{P} = A^{1} + 2A^{2}(T - 283.15)$$
(9)

The E_{ϕ}^{0} values of sodium citrate at different temperatures and PVP concentrations are also given in Table 5. As mentioned

Figure 3. Plot of apparent molar volume of Na₃Cit, V_{ϕ} , in aqueous solution of 0.002*m* PVP against molality of the salt, m_s , at different temperatures: \bigcirc , T = 283.15 K; \triangle , T = 288.15 K; \bigcirc , T = 293.15 K; \times , T = 298.15 K; \blacktriangle , T = 303.15 K; \diamondsuit , T = 308.15 K; \neg , calculated by eqs 3–6.

Figure 4. Plot of apparent molar volume of Na₃Cit, V_{ϕ} , in aqueous solution of 0.004*m* PVP against molality of the salt, m_{s} , at different temperatures: \bigcirc , T = 283.15 K; \triangle , T = 288.15 K; \bigcirc , T = 293.15 K; \times , T = 298.15 K; \blacktriangle , T = 303.15 K; \diamondsuit , T = 308.15 K; \neg , calculated by eqs 3–6.

Figure 5. Plot of infinite dilution apparent molar volume of Na₃Cit, V_{ϕ}^0 , against temperature: \bigcirc , in water; \triangle , in aqueous solution of 0.002*m* PVP; \bullet , in aqueous solution of 0.004*m* PVP.

above, $E_{\phi}^{0} = (\partial V_{\phi}^{0} (\text{elect})/\partial T)_{P}$. From Table 5, we note that at each temperature E_{ϕ}^{0} values have a positive value and decrease with increasing temperature. On heating, some water molecules may be released from the hydration layers. This would increase the solution volume a little more rapidly than that of the solvent (aqueous PVP solutions). In fact, the infinite dilution isobaric expansivity of solution (Na₃Cit + PVP + H₂O) is greater than the isobaric expansivity of solvent (PVP + H₂O).

Figure 6 shows a positive transfer volume of Na₃Cit from an aqueous solution to an aqueous PVP solution. This indicates that the sodium citrate ions in aqueous PVP solutions are larger than those in aqueous solutions and that the value of V_{ϕ} increases as the concentration of PVP increases. The apparent molar volumes of transfer, $\Delta_t V_{\phi}^0$, at infinite dilution for trisodium citrate from water to aqueous PVP solutions are listed in Table 6 at each temperature. As mentioned above, a ternary aqueous solution of PVP and trisodium citrate separates into a PVP-

Figure 6. Plot of apparent molar volume of Na₃Cit, V_{ϕ} , against molality of the salt, m_s , at T = 298.15 K: \bigcirc , in water; \triangle , in aqueous solution of 0.002*m* PVP; \bullet , in aqueous solution of 0.004*m* PVP.

rich phase and a salt-rich phase over part of the composition space.⁸ The formation of aqueous two-phase systems clearly indicates the mutual exclusion of the ions and the polymer and their high affinity for the solvent. It is possible that even in homogeneous systems (below the phase boundary) the ions are excluded from the near surface region of the polymer in solution. With an increase in the concentration of the polymer or the salt, the extent of exclusion will increase. Ultimately, the system could reach a state where, for entropic reasons, phase formation would become favorable. Exclusion of ions from the polymer molecule-water interface itself can occur for a number of reasons. Both the polymer and the ion are strongly hydrated in solution. Because of the hydration sheath, the near-surface region of the polymer may not be accessible to structure-making ions. Exclusion can occur also by repulsive interaction between the anions and the anionic-like imide group on the pyrrolidone ring especially in the presence of nonbonding cations such as K⁺, NH4⁺, and Na⁺. Ananthapadmanabhan and Goddard,²¹ using the turbidimetric titration technique, have shown that for a series of sodium salts two-phase formation occurs with anions such as sulfate which have a marked salting-out effect on nonelectrolytes but that for large, singly charged ions such as iodide only one phase exists. The same authors also found that for a series of sulfates the salting-out effects of the anions are offset by di- and trivalent cations which are believed to coordinate to the ether oxygens to produce a salting-in effect. There are two factors which have an effect on the apparent molar volume of trisodium citrate in aqueous PVP solutions. (1) The strong attractive interactions due to the hydrogen-bond formations between the imide nitrogen of the PVP chain and water molecules induce the dehydration of ions and therefore increase the V_{ϕ} . (2) Repulsive interactions between the anion and the anionic-like imide group on the pyrrolidone ring increase the apparent molar volume of trisodium citrate.

On the basis of the sound velocity and density values, the isentropic compressibility, κ_s (kPa⁻¹), values were calculated for the investigated mixtures from Laplace–Newton's equation

$$\kappa_s = d^{-1} u^{-2} \tag{10}$$

where u (m·s⁻¹) is sound velocity. The isentropic compressibility of all the solutions decreases with increasing concentration. As

Table 6. Values of $\Delta_t V_0^{4}/(\text{cm}^3 \cdot \text{mol}^{-1})$ for Trisodium Citrate from Water to Aqueous PVP Solutions at Different Temperatures

	temperature								
system	283.15 K	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K			
		$\Delta_t V$	-0 ¢						
$Na_3Cit + PVP(0.000m) + H_2O$	0.000	0.000	0.000	0.000	0.000	0.000			
$Na_3Cit + PVP(0.002m) + H_2O$	2.080	1.967	1.828	1.664	1.474	1.259			
$Na_3Cit + PVP(0.004m) + H_2O$	4.325	4.262	4.17	4.050	3.902	3.727			

an example, in Figure 7, the isentropic compressibilities are plotted versus the molality of trisodium citrate for a binary aqueous solution of Na₃Cit. From Figure 7, we note that at each working temperature, as the concentration of trisodium citrate is increased, κ_s is decreased. If we assume that the size of the ion is not pressure dependent and the electrostricted water is already compressed to its maximum extent by the charge on the ions,²⁰ we can assume that the compressibility of a solution is mainly due to the effect of pressure on the bulk (unhydrated) water molecules. As the concentration of the electrolyte increases and a large portion of the water molecules are electrostricted, the amount of bulk water decreases causing the compressibility to decrease. Also, Figure 7 shows that the concentration dependence of κ_s becomes greater as temperature decreases. This is because at higher temperatures ion-solvent interactions are weakened and therefore the number of water molecules affected by the ions decreases. It has been shown that²⁰ for electrolytes with large hydration numbers, such as MgSO₄ and Na₂SO₄, the concentration dependence of κ_s is more negative than that for electrolytes such as NaCl with small hydration numbers. The temperature dependence of κ_s , $\partial \kappa_s / \partial T$, is also negative for all the solutions studied in this work. It has been shown that²² the compressibility of water also decreases with temperature to a minimum κ_s value near 319.15 K. It has been postulated²² that this is due to the existence of two structural types of water aggregates at a given temperature. The $\partial \kappa_s / \partial T$ term for the structured form is negative, whereas it is positive for the less-structured form. At temperatures below 319.15 K, the structured form is the predominant species, whereas at high temperatures, the nonstructured form predominates. As can be seen from Figure 7, the value of $\partial \kappa_s / \partial T$ is much less negative in dilute electrolyte solution than in water, and as

Figure 7. Plot of isentropic compressibility κ_s of Na₃Cit + water solutions against molality of the salt, m_s , at different temperatures: \bigcirc , T = 283.15 K; \triangle , T = 288.15 K; \spadesuit , T = 293.15 K; \times , T = 298.15 K; \blacktriangle , T = 303.15 K; \diamondsuit , T = 308.15 K.

the concentration increases, $\partial \kappa_s / \partial T$ becomes less negative. The isentropic compressibility isotherms of aqueous Na₃Cit + PVP solutions have a form similar to those of aqueous Na₃Cit solutions.

In Figure 8, the values of κ_s are plotted as a function of salt concentration at various PVP concentrations at 298.15 K. Figure 8 shows that at each temperature at a constant salt concentration the value of κ_s decreases as the concentration of PVP increases. This effect can be attributed to the strong attractive interactions due to the hydration of polymer segments therefore decreasing the amount of bulk water and also incorporation of ionic species into the PVP chain. In fact, as can be seen from Figure 8, at each working temperature as the concentration of PVP is increased, κ_s of the water + PVP solution is decreased due to the combined effect of hydration of polymer segments and breaking of the three-dimensional network structure of water.

The apparent molar isentropic compressibility K_{ϕ} is defined as

$$K_{\phi} = -\left(\frac{\partial V_{\phi}}{\partial P}\right)_{T} \tag{11}$$

Similar to the apparent molar volume, the apparent molar isentropic compressibility of the Na₃Cit, K_{ϕ} , in water and in aqueous PVP solutions was computed from the density and sound velocity experimental data according to the following equation:

$$K_{\phi} = \frac{1000 + m_{\rm p}M_{\rm p}}{m_{\rm s}dd_0} (\kappa_{\rm s}d_0 - \kappa_{\rm s0}d) + \frac{M_{\rm s}\kappa_{\rm s}}{d} \tag{12}$$

where κ_s and κ_{s0} are the isentropic compressibility of the solution and solvent, respectively. For systems containing both trisodium

Figure 8. Plot of isentropic compressibility against molality of the salt, m_s , at T = 298.15 K: \bigcirc , in water; \triangle , in aqueous solution of 0.002m PVP; \bigcirc , in aqueous solution of 0.004m PVP.

Figure 9. Plot of apparent molar isentropic compressibility of Na₃Cit, K_{ϕ} , in water against molality of the salt, m_s , at different temperatures: \bigcirc , T = 283.15 K; \triangle , T = 288.15 K; \blacklozenge , T = 293.15 K; \times , T = 298.15 K; \blacktriangle , T = 303.15 K; \diamondsuit , T = 308.15 K; -, calculated by eqs 13–16.

citrate and PVP, PVP + water is considered as the solvent. An equation of the form²³

$$K_{\phi} = K_{\phi}^{0} + S_k m_{\rm s}^{0.5} + B_k m_{\rm s} \tag{13}$$

was used for correlating the experimental apparent molar isentropic compressibility data. Similar to the apparent molar volume, the temperature dependence of K_{ϕ}^0 , S_k , and B_k was expressed in polynomial form with (T - 283.15) K as a variable, as follows:

$$K_{\phi}^{0} = A^{0} + A^{1}(T - 283.15) + A^{2}(T - 283.15)^{2}$$
(14)

$$S_k = S_k^0 + S_k^1 (T - 283.15) + S_k^2 (T - 283.15)^2$$
(15)

$$B_k = B_k^0 + B_k^1 (T - 283.15) + B_k^2 (T - 283.15)^2$$
 (16)

The coefficients of these equations and the corresponding absolute relative deviation for $10^4 K_{\phi}$ at each temperature and PVP concentration are also given in Tables 3 and 4, respectively. The values of K_{ϕ}^0 at different temperatures and PVP concentrations calculated from eq 14 and the coefficients presented in Table 3 are also given in Table 5. In Figure 9, the temperature and concentration dependence of K_{ϕ} have been given for Na₃-Cit + water solutions. From Figure 9, it can be seen that the value of apparent molar isentropic compressibility of trisodium citrate in water (and also in PVP solutions) is negative and it increases with increasing concentration of trisodium citrate and temperature. As can be seen from Table 5, K_{ϕ}^{0} values are negative and they increase with increasing temperature. Also, it is seen that the values of K_{ϕ}^0 at each temperature follow the order Na₃Cit + PVP(0.002*m*) + H₂O > Na₃Cit + PVP(0.004*m*) + H₂O > Na₃Cit + PVP(0.000m) + H₂O. The negative values of K_{ϕ} and K_{ϕ}^{0} of trisodium citrate in aqueous PVP solutions indicate that the water molecules around the trisodium citrate ions are less compressible than the water molecules in the bulk solution. By differentiating eq 8 with respect to pressure, we obtain

where $K_{\phi}^{0}(\text{int}) = -(\partial V_{\phi}^{0}(\text{int})/\partial P)_{T}$ is the intrinsic apparent molar compressibility and $K_{\phi}^{0}(\text{elect}) = -(\partial V_{\phi}^{0}(\text{elect})/\partial P)_{T}$ is the electrostriction apparent molar compressibility. Because the effect of pressure on the volume of crystals is small, one would expect $K_{\phi}^{0}(\text{int})$ to be positive and close to zero.²⁴ Thus, $K_{\phi}^{0}(\text{ion})$ is due mainly to $K_{\phi}^{0}(\text{elect})$. In fact, the negative values of K_{ϕ} and K_{ϕ}^{0} of trisodium citrate in aqueous PVP solutions are attributed to the strong attractive interactions due to the hydration of ions at low temperatures. By increasing temperature, ionsolvent interactions are weakened, and therefore, at high temperatures the water molecules around the sodium citrate become more compressible than the water molecules in the bulk solution.

Conclusions

Experimental data at T = (283.15 to 308.15) K of density and sound velocity of trisodium citrate in water and in water + PVP have been reported. The values of apparent molar volumes and isentropic compressibilities of solutions were calculated from the measured data. The results show a positive transfer volume of trisodium citrate from an aqueous solution to an aqueous PVP solution. Also, the results show that the apparent molar volumes of trisodium citrate increase as the concentration of sodium citrate increases. The apparent molar isentropic compressibility of trisodium citrate in both binary and ternary solutions has negative values at each temperature. The negative values of apparent molar isentropic compressibility of trisodium citrate imply that the water molecules around the trisodium citrate ions are less compressible than the water molecules in the bulk solutions.

Literature Cited

- Albertsson, P.-A. Partition of Cell Particles and Macromolecules, 3rd ed.; Wiley: New York, 1986.
- (2) Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology; Walter, H., Brooks, D., Fisher, D., Eds.; Academic Press: Orlando, 1985.
- (3) Bouchard, E. F.; Meritt, E. G. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 6, pp 150–179.
- (4) Van Ness, J. H. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 13, pp 80–103.
- (5) Berger, S. E. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 13, pp 103–121.
- (6) Kertes, A. S.; King, C. J. Biotechnol. Bioeng. 1986, 28, 269-281.
- (7) Sadeghi, R. Vapor-liquid equilibrium in aqueous systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures— Experimental and modeling. *Fluid Phase Equilib.* 2006, 249, 33–41.
- (8) Sadeghi, R.; Rafiei, H. R.; Motamedi, M. Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures—Experimental and modeling. *Thermochem. Acta* 2006, 451, 163–167.
- (9) Apelblat, A.; Manzurola, E. Apparent molar volumes of organic acids and salts in water at 298.15 K. *Fluid Phase Equilib.* **1990**, *60*, 157– 171.
- (10) Patterson, B. A.; Woolley, E. M. Thermodynamics of proton dissociations from aqueous citric acid: apparent molar volumes and apparent molar heat capacities of citric acid and its sodium salts at the pressure 0.35 MPa and at temperatures from 278.15 K to 393.15 K. J. Chem. Thermodyn. 2001, 33, 1735–1764.
- (11) Salabat, A.; Shamshiri, L.; Saharkar, F. Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K. J. Mol. Liq. 2005, 118, 67–70.
- (12) Murugesan, T.; Perumalsamy, M. Densities and Viscosities of Polyethylene Glycol 2000 + Salt + Water Systems from (298.15 to 318.15) K. J. Chem. Eng. Data 2005, 50, 1290–1293.
- (13) Ozeki, S.; Kojima, A.; Harada, S. Volumetric Behavior of (Dodecyloxy)methyl-18-Crown-6 in Water: Micellar Interactions and Phase Separation. J. Phys. Chem. 1996, 100, 19446–19454.
- (14) Redlich, O.; Mayer, D. M. The Molal Volumes of Electrolytes. *Chem. Rev.* **1964**, *64*, 221–227.
- (15) Pinheiro, L. M. V.; Calado, A. R. T.; Reis, J. C. R.; Viana, C. A. N. Shape Effects in the Partial Molar Volume of Tetraethylphosphonium

and Ammonium Iodides in Six Nonaqueous Solvents. J. Solution Chem. 2003, 32, 41-52.

- (16) Millero, F. J. Molal volumes of electrolytes. *Chem. Rev.* **1971**, *71*, 147–176.
- (17) Marcus, Y.; Hefter, G. Standard Partial Molar Volumes of Electrolytes and Ions in Nonaqueous Solvents. *Chem. Rev.* **2004**, *104*, 3405–3452.
- (18) Gurney, R. W. *Ionic Processes in Solutions*; McGraw-Hill: New York, 1954.
- (19) Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C. Apparent molal volumes of alkali halides in water at 25°. Influence of structural hydration interactions on the concentration dependence. *J. Phys. Chem.* **1969**, *73*, 3346–3351.
- (20) Millero, F. J.; Ward, G. K.; Lepple, F. K.; Foff, E. V. Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45° at 1 atm. J. Phys. Chem. 1974, 78, 1636–1643.
- (21) Ananthapadmanabhan, K. P.; Goddard, E. D. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. *Langmuir* **1987**, *3*, 25–31.
- (22) Millero, F. J.; Lepple, F. K. Isothermal Compressibility of Deuterium Oxide at Various Temperatures. J. Chem. Phys. 1971, 54, 946–949.
- (23) Dey, N. C.; Bhuyan, J.; Haque, I. Partial Molar Volumes and Partial Molar Adiabatic Compressibilities of Fe(III) Tetrafluoroborate Complexes with DMSO, Pyridine, and Pyridine Derivatives. *J. Solution Chem.* 2003, *32*, 547–558.
- (24) Noyes, R. M. Assignment of Individual Ionic Contributions to Properties of Aqueous Ions J. Am. Chem. Soc. 1964, 86, 971–979.

Received for review January 1, 2007. Accepted March 9, 2007. JE700001X